3.805 \(\int \frac{A+B x^2}{(e x)^{5/2} \sqrt{a+b x^2}} \, dx\)

Optimal. Leaf size=138 \[ -\frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (A b-3 a B) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right ),\frac{1}{2}\right )}{3 a^{5/4} \sqrt [4]{b} e^{5/2} \sqrt{a+b x^2}}-\frac{2 A \sqrt{a+b x^2}}{3 a e (e x)^{3/2}} \]

[Out]

(-2*A*Sqrt[a + b*x^2])/(3*a*e*(e*x)^(3/2)) - ((A*b - 3*a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] +
Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(3*a^(5/4)*b^(1/4)*e^(5/2)*Sqrt
[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0864553, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {453, 329, 220} \[ -\frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (A b-3 a B) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{3 a^{5/4} \sqrt [4]{b} e^{5/2} \sqrt{a+b x^2}}-\frac{2 A \sqrt{a+b x^2}}{3 a e (e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/((e*x)^(5/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*A*Sqrt[a + b*x^2])/(3*a*e*(e*x)^(3/2)) - ((A*b - 3*a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] +
Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(3*a^(5/4)*b^(1/4)*e^(5/2)*Sqrt
[a + b*x^2])

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{(e x)^{5/2} \sqrt{a+b x^2}} \, dx &=-\frac{2 A \sqrt{a+b x^2}}{3 a e (e x)^{3/2}}-\frac{(A b-3 a B) \int \frac{1}{\sqrt{e x} \sqrt{a+b x^2}} \, dx}{3 a e^2}\\ &=-\frac{2 A \sqrt{a+b x^2}}{3 a e (e x)^{3/2}}-\frac{(2 (A b-3 a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{3 a e^3}\\ &=-\frac{2 A \sqrt{a+b x^2}}{3 a e (e x)^{3/2}}-\frac{(A b-3 a B) \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{3 a^{5/4} \sqrt [4]{b} e^{5/2} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0455389, size = 81, normalized size = 0.59 \[ -\frac{2 x \left (x^2 \sqrt{\frac{b x^2}{a}+1} (A b-3 a B) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^2}{a}\right )+A \left (a+b x^2\right )\right )}{3 a (e x)^{5/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/((e*x)^(5/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*x*(A*(a + b*x^2) + (A*b - 3*a*B)*x^2*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)]))/
(3*a*(e*x)^(5/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 223, normalized size = 1.6 \begin{align*} -{\frac{1}{3\,bxa{e}^{2}} \left ( A\sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-ab}xb-3\,B\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) \sqrt{-ab}xa+2\,A{x}^{2}{b}^{2}+2\,Aab \right ){\frac{1}{\sqrt{b{x}^{2}+a}}}{\frac{1}{\sqrt{ex}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(1/2),x)

[Out]

-1/3/(b*x^2+a)^(1/2)/x*(A*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(
1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*x*b
-3*B*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/
2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*x*a+2*A*x^2*b^2+2*A*a*b)
/b/a/e^2/(e*x)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{\sqrt{b x^{2} + a} \left (e x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)/(sqrt(b*x^2 + a)*(e*x)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{2} + A\right )} \sqrt{b x^{2} + a} \sqrt{e x}}{b e^{3} x^{5} + a e^{3} x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((B*x^2 + A)*sqrt(b*x^2 + a)*sqrt(e*x)/(b*e^3*x^5 + a*e^3*x^3), x)

________________________________________________________________________________________

Sympy [C]  time = 25.2779, size = 97, normalized size = 0.7 \begin{align*} \frac{A \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt{a} e^{\frac{5}{2}} x^{\frac{3}{2}} \Gamma \left (\frac{1}{4}\right )} + \frac{B \sqrt{x} \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt{a} e^{\frac{5}{2}} \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(e*x)**(5/2)/(b*x**2+a)**(1/2),x)

[Out]

A*gamma(-3/4)*hyper((-3/4, 1/2), (1/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*e**(5/2)*x**(3/2)*gamma(1/4)) +
B*sqrt(x)*gamma(1/4)*hyper((1/4, 1/2), (5/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*e**(5/2)*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{\sqrt{b x^{2} + a} \left (e x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)/(sqrt(b*x^2 + a)*(e*x)^(5/2)), x)